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Abstract: 

The paper studies if the Maddison set of data for GDP per capita follows a simple statistical 

regularity, known as Benford’s Law. It is a simple logarithmic relation on the frequency of 

the first digit in a data set. These data ought to follow the law as they are Maddison’s 

calibration of data compiled by many independent agencies and researches. The data set 

consists of 12,411 observations, so a rather strong test can be made. On visual inspection the 

relation appears to fit rather well, but the law is rejected by a formal test. The explanation of 

the rejection is found to be that the range of the data is too small. 
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1. Introduction 
 

The purpose of this note is to submit an important data set to a test. The data is Maddison’s 

gdp set, which consists of 12,411 observations.2 It is tested if these data follow a simple 

numerical regularity known as Benford’s Law. It predicts that the first digit of these data 

should have the frequency distribution given in Table 1.  

 
 

Table 1. Benford’s distribution 

Digit Frequency Digit Frequency Digit Frequency
1 30.10 % 4 9.69 % 7 5.80 % 
2 17.61 % 5 7.92 % 8 5.12 % 
3 12.49 % 6 6.69 % 9 4.58 % 

 
 

Three terms are used in a special way: (i) The lower case gdp means GDP per capita. The data 

are published as an integer in comparable 1990 US $.3 (ii) The first digit of the gdp considers 

numbers in three log-decades: The log-decade of the 100s, where the first digit is followed by 

two more; the log decade of the 1000s, where the first digit is followed by three more; and 

finally the log-decade of the 10000s, where the first digit is followed by four more. (iii) The 

range problem occurs if the sample does not contain enough data in each log-decade for the 

distribution to fully appear.4  

Section 2 explains the theory of Benford’s Law, derives the distribution, and gives an 

introduction to the literature. Obviously Benford’s Law is an “oddball” statistical regularity, 

which seems unknown to most economists. However, as argued by Varian (1972), it points to 

a problem if it fails. It may indicate that something “fishy” is going on. 

 Section 3 explains the calculations from the gdp-matrix to the first digit distribution 

and shows how the resulting distributions look. It is also analyzed how close the distribution 

is to Benford‘s distribution. It fits amazingly well, but not perfectly well. The calculations are 

also made for different periods and for different country groups. The paper looks at all data, 

and at two quartile distributions: Over time in section 4 and over gdp-levels in section 5. 
                                                 
2. The data were collected by the late Angus Maddison for the OECD Millennium Publication (see references). 
Maddison updated the data till February 2010 (as used at present), shortly before he passed away.  
3. The published data has no decimals, but the downloadable worksheets have plenty. When I refer to # digits, it 
is the digits before the decimal point, i.e., to the form of the published data. 
4. Imagine, e.g., that we consider a sub-sample of gdp observations that all are in the range from $1000 to 1800. 
Then the fist digit would be 1 for all observations, and no Benford distribution would appear. Thus, it is a 
condition for the Benford distribution to appear that the range of the data is large enough. 
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 In addition to Benford’s Law, we have reason to consider the folk theorem in 

empirical economics: If you test any theory in economics with enough data, you will reject it. 

Benford’s Law is not an economic theory – it is rather a numerical regularity, but nevertheless 

the results turn out to be that the law seems to apply rather well, but it is rejected by a formal 

test using all the data. 

 

2. Why should Benford’s Law apply? 
 

Benford’s Law is one of these obvious relations that you are unlikely to see for yourself – and 

the first time it is presented it looks like a conjuring trick. The whole point is obvious once 

you look at a logarithmic axis: The distance between 1 and 2 is much larger than the distance 

between 2 and 3 etc., so in a log-linear world more numbers start with 1 than with 2! 

 It is easy to calculate the frequencies of Table 1 by noting that log(1) = 0.000 and 

log(2) = 0.3010, so the distance between the two is 0.3010, the distance between log(2) and 

log(3) is 0.1761, etc. And, lo and behold, the sum of all distances between log(1) and log(10) 

is 1, as follows from the fact that log(10) = 1. Hence by multiplication by 100 we get the 

frequencies in % of Benford’s distribution from Table 1. 

 Benford (1938) describes the complicated path that led him to his law. He believed 

that he was dealing with “anomalous numbers”. Also, he did find some rather puzzling data 

sets that obeyed the law. Varian (1972) proposes to use the law to reveal data manipulation, 

and Nigrini (1996 and 1999) and Nye and Mould (2007) study cases where the data do obey 

the law and others where the law fails under suspicious circumstances. 

 The newest paper in the field is Michalski and Stoltz (2010) dealing with balance of 

payment data. For most countries these data obey Benford’s Law. However, countries with 

fixed exchange rates under pressure publish data that does not follow the law at all. Michalski 

and Stoltz interpreted this as a clear statistical proof that countries under pressure manipulate 

their data. Not all countries do it, but enough to generate highly suspicious data. 

 The data in the Maddison set should be log-linear, and they are put together by many 

agencies and individual researchers. Thus, theoretically Benford’s Law should fit. 
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3. Looking at all 12,411 gdp data in the Maddison set 
 

Section 3.1 shows the coverage of the data. Section 3.2 shows how the calculations are made 

for all observations and discusses the truncation problem. Section 3.3 gives the formal tests of 

the distributions. 

 

3.1 The coverage of the data 

As of now the Maddison gdp data consists of 12,411 observations. They cover – as much as 

possible – the period from year 1 to 2008 for 164 (present day) countries. Figure 1 shows the 

number of countries covered. The first 1800 years had only a few observations, but gradually 

more countries are included. 

 
 

Figure 1. The number of observations in the Maddison gdp data set 

 

 

 

 

 

 

 

 

 

 

 
 

Note: The left-hand part of the figure ends in 1820, where the right-hand part starts. The dots are for the years 
with data and show the number of countries covered. Observations are available for 2008 – 1820 + 6 = 194 
years, and 164 countries; but of the full 194 x 164 matrix, only 12,411/31,816 = 39% of the cells are filled. 
 
 

3.2 The calculations  

The calculations are done in a standard worksheet and use the histogram function:  

 The minimum gdp is 207 in the Maddison data set, and the maximum is 42,196; hence 

they extend over three log-decades. Eight are from the log-decade of the hundreds: 200, 300, 

400 500, 600, 700, 800 and 900; nine are from the log-decade of the thousands 1000, 2000, 
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3000, 4000, 5000, 6000, 7000, 8000 and 9000; and four are from the log-decade of the ten 

thousands 10000, 20000, 30000, 40000. When the bin limits in the histogram are set at the 

said numbers, it generates the first-digit-frequencies listed in Table 2.5 The last column to the 

right is the sums of the frequencies starting with each digit. They are the frequencies that 

should follow Benford’s Law. 

 
 

Table 2. The basic count: Number of observations in three log decades 

First All observations between 207 and 42,196  
digit Hundreds Thousands Ten thousands All 

1  2988 945 3933 
2 15 1758 271 2044 
3 66 1205 37 1308 
4 268 781 1 1050 
5 449 531 980 
6 586 384 970 
7 476 300 776 
8 450 240 690 
9 482 178 660 

Sum 2792 8365 1254 12411 
Note: The full panel has 194·164 = 31,816 cells, of which 12,411 are filled. 

 

 

The same procedure can be used for any subset of the data. It is easy to check that all data are 

counted once and only once as the sum of all parts of any division has to tally with the values 

given in Table 2. As mentioned there are no observations below 200 and none above 50,000, 

and the number of observations become very thin when they approach the two ends of the 

interval. So measured in log-decades, the range of the data seems barely enough. Figure 2 

shows the observations from Table 2, and includes the distribution of all observations 

expected from Benford’s Law. 

 From just looking at the curves, it is obvious that the log-decades of the hundreds and 

the ten thousands do not follow the Benford distribution – they are too close to the start and 

the end of the data. The frequencies for the log-decade of the hundreds only look Benford-like 

after the fifth digit. And the frequencies for the log-decade of the ten-thousands quickly fall to 

zero. Thus the distribution is likely to suffer from some range problems. 

 However, both the curve for all observations and the one for the log-decades of the 

thousands look much as expected. The impression one gets from the graph is that the 

                                                 
5. To guard against rounding errors, all bins were set 0.0001 lower. 



6 
 

frequencies for the thousands fall too fast as they get close to the end. Also, the curve for all 

has an extra hump at 6, when the curve for the hundreds kicks in. 

 
 

Figure 2. The frequencies from Table 3 graphed, 

with the Benford distribution of 12,411 observations included 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 The formal tests: Nothing fits perfectly 

The formal tests of the two most Benford-looking frequencies from Table 2 above are given 

in Table 3. They confirm the observations from Figure 2. For all observations there are too 

few observations for digits 2 and 3 and too many for digit 6. For the log-decade of the thou-

sands, the distribution is too steep. 

 However, as is shown on Figure 3 the observed and the expected distributions do look 

alike. It is not likely that any other known distribution will have a better fit, and we have a 

very simple theory to explain why it should fit. Also, if we move 300 of the 12,411 

observations in the right way, we can get the χ2-test within the 5% limit of significance, and if 

we move about 100 more, we can reach a χ2-test at the 50% level. 
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Table 3. Two formal tests 

 All observations The observations of the ten thousands 
Digit Observed Expected Diff. χ2-test Observed Expected Diff. χ2-test 

1 3,933 3,736.1 196.9 10.4 2988 2518.1 469.9 87.7 
2 2,044 2,185.5 -141.5 9.2 1758 1473.0 285.0 55.1 
3 1,308 1,550.6 -242.6 38.0 1205 1045.1 159.9 24.5 
4 1,050 1,202.8 -152.8 19.4 781 810.7 -29.7 1.1 
5 980 982.7 -2.7 0.0 531 662.4 -131.4 26.0 
6 970 830.9 139.1 23.3 384 560.0 -176.0 55.3 
7 776 719.7 56.3 4.4 300 485.1 -185.1 70.6 
8 690 634.9 55.1 4.8 240 427.9 -187.9 82.5 
9 660 567.9 92.1 14.9 178 382.8 -204.8 109.5 

Sum 12,411 12,411 0 124.3 8365 8365 0 512.4 
Note: All χ2-test contributions of 8 or higher are bolded. 

 
 

Figure 3. A scatter of observed over expected frequencies 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Thus we can explain the deviations from Benford’s distribution by the range problems, and it 

is arguable that the fit is as good as it can be under the circumstances. 
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4. Two divisions into quartiles: By time and by income 
 

In the two division experiments, the 12,411 observations are divided in quartiles. Each 

quartile has to be as close to 12,411/4 = 3,103.75 observations as possible. In section 4.1 the 

quartiles are made over time, so that each year is kept together. In section 4.2 the quartiles are 

made by income, so that each country is kept together. 

 

4.1 Division by time 

It is possible that the problems are concentrated in one end of the data, and on the face of it 

one may suspect that the old data are the most problematic. Table 4 shows the division made 

and the test results for each quartile. 

 
 

Table 4. Four quartiles over time 

 1st quartile 2nd quartile 3rd quartile 4th quartile 
Years From 1 to 1937 From 1938 to 1967 From 1968 to 1989 From 1990 to 2008 
Digit N Diff. χ2-test N Diff. χ2-test N Diff χ2-test N Diff. χ2-test 

1 1100 166.5 29.7 889 -43.9 2.1 1018 86.3 8.0 926 -12.0 0.2 
2 599 52.9 5.1 500 -46.7 3.8 378 -167.0 51.2 567 18.3 0.6 
3 370 -17.4 0.8 337 -52.2 6.5 283 -103.7 27.8 318 -71.3 13.1 
4 290 -10.5 0.4 262 -38.3 4.9 263 -36.9 4.5 235 -67.0 14.9 
5 192 -53.5 11.7 254 8.6 0.3 266 20.9 1.8 268 21.3 1.8 
6 162 -45.6 10.0 283 74.5 27.5 278 70.8 24.2 247 38.4 7.1 
7 130 -49.8 13.8 228 50.3 13.0 194 14.5 1.2 224 43.3 10.4 
8 121 -37.6 8.9 161 1.5 0.0 215 56.7 20.3 193 33.6 7.1 
9 137 -4.9 0.2 185 47.2 13.2 200 58.4 24.1 138 -4.6 0.1

Sum 3101 -0 80.6 3099 0 71.3 3095 0 163.0 3116 0 55.2 
Note: The table is calculated as Table 3, but the column for the expected distribution is omitted.  

 
 

Table 5. Kendall’s τ between the nine χ2-contributions from Tables 3 and 4 

 1st quartile 2nd quartile 3rd quartile 4th quartile All Trend b) 
1st quartile 1 -0.22 -0.33 -0.17 -0.33 -0.22 
2nd quartile -0.22 1 0.11 -0.06 0.44 0.22 
3rd quartile -0.33 0.11 1 -0.17 0.44 -0.22 
4th quartile -0.17 -0.06 -0.17 1 0.06 0.06 
Average a) -0.24 -0.06 -0.13 -0.13 0.15 -0.04 

 Note: a) Average of non diagonal elements. b) Correlation to the nine digits. None of the τ’s  
  calculated are significant. 
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Three quartiles have lower χ2-tests than the aggregate one, and all reject that the data for the 

quartile follow Benford’s Law. The quartile that deviates most from the Benford distribution 

is the 3rd one that goes from 1968 to 1989.  

Once again, the frequencies for each quarter do not look very different from the 

expected distribution as seen on Figure 4. Also the largest χ2-contributions are for different 

digits.  Table 5 shows the correlations between the nine χ2-contributions for the four quartiles. 

The correlations are calculated by Kendall τ, chosen as the χ2-contributions are squared. The 

correlations in Table 5 are not very high, and the impression that the largest χ2-contributions 

are fairly randomly distributed is confirmed by Figure 4. 

 
 

Figure 4. A scatter of observed over expected frequencies for the time-quartiles 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

We are thus in the same situation as in section 2. The four quartiles look much as they would 

if they followed Benford’s Law, but the formal test rejects that the deviations are random. 

 

4.2 Divided by income 

The second experiment divides the countries by income level. Everything except the division 

is done precisely as in section 4. The division follows the present gdp level. Thus the gdp-

matrix is first sorted by the average income for the last decade, which is for the period from 

1999 to 2008, and then the countries are divided in 4 groups as explained. 
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Table 6. Four quartiles over countries by income 

 1st quartile 2nd quartile 3rd quartile 4th quartile 
Income Lowest Lower middle Higher middle Highest 
Digit N Diff. χ2-test N Diff. χ2-test N Diff χ2-test N Diff. χ2-test 

1 1149 209.5 46.7 812 -124.5 16.6 888 -47.3 2.4 1084 159.2 27.4 
2 140 -409.6 305.2 752 204.2 76.1 457 -90.1 14.8 695 154.0 43.9 
3 80 -309.9 246.3 543 154.3 61.3 320 -68.2 12.0 365 -18.8 0.9 
4 169 -133.5 58.9 301 -0.5 0.0 294 -7.1 0.2 286 -11.7 0.5 
5 337 89.9 32.7 189 -57.3 13.3 277 31.0 3.9 177 -66.2 18.0 
6 400 191.1 174.7 190 -18.3 1.6 254 46.0 10.2 126 -79.7 30.9 
7 299 118.0 76.9 131 -49.4 13.5 231 50.8 14.3 115 -63.2 22.4 
8 275 115.4 83.3 81 -78.1 38.4 216 57.1 20.5 118 -39.1 9.7 
9 272 129.2 116.9 112 -30.4 6.5 170 27.8 5.4 106 -34.6 8.5 

Sum 3121 0 1141.7 3111 0 227.2 3107 0 83.7 3072 0 162.2 
Note: See Table 4. 
 
 

Table 7. Kendall’s τ between the nine χ2-contributions from Tables 3 and 6 

 1st quartile 2nd quartile 3rd quartile 4th quartile All Trend b) 
1st quartile 1 0.33 0.44 0.11 0.44 0.00 
2nd quartile 0.33 1 0.44 0.22 -0.11 -0.22 
3rd quartile 0.44 0.44 1 0.22 -0.11 0.22 
4th quartile 0.11 0.22 0.22 1 -0.22 -0.22 
Average a) 0.30 0.33 0.37 0.19 0.00 -0.06 

 

 

Here the deviations from Benford’s distribution are larger, and the largest deviation occurs for 

the poorest quarter of the countries, where the χ2(8) = 1141.7. This is a dramatic rejection, and 

on Figure 4 it is certainly clear that the curve for the first quartile deviates a lot from the 

expected one. However, when we look at all four curves the deviations are very different, as 

they have to be when the average curve looks as Figure 2. 

 The countries in the highest group were once poor, but the countries in the lowest 

group were never rich. Thus the range problems are likely to be concentrated in the lowest 

group. This is precisely what is shown by Figure 6, which is made as Figure 2. The curves are 

a bit difficult to read as they overlap. The frequencies are from two incomplete log-decades. 

In the 100s the Benford distribution first starts to appear from digit 6 and up, then the 

frequencies jump to the 1000s, but here the frequencies very quickly taper off. This explains 

why the aggregate distribution misses the observations from 2 to 5. In this case the range 

problem is so large that it dominates the data. 
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Figure 5. A scatter of observed over expected frequencies for the income-quartiles 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. The frequencies from the lowest quartile in Table 6 graphed. 

The Benford distribution of 3,121 observations included 
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6. How worried should we be? 

 

The author of this paper is a frequent user of the Maddison gdp-data both in his research and 

his teaching. Many other economists use these data, and hence it appears a worthwhile project 

to submit them to a test. Consequently we study if they follow Benford’s Law. The only eco-

nomics it demands is that it assumes that data for gdp (GDP per capita) have a basic log-linear 

structure.   

 Our analysis has showed three points: (1) The first-digit data has a frequency structure 

that looks rather close to Benford’s distribution. (2) A formal test shows that the deviations 

from the distribution are too large to be random. (3) When the data are divided in groups it 

improves the fit when the division is over time, but when the division is over income the fit 

gets worse especially in the quartile for the lowest income. 

 As regards (2) the paper contains 10 formal tests to determine if the Maddison gdp-

data follow Benford’s Law, either for the whole set or for various subdivisions. In all ten 

cases, the tests reject that the distribution is an exact description of the data. If we follow 

Varian (1972), we should conclude that the data are manipulated, but it is not easy to point to 

a manipulator with some purpose in mind. These data are, for all I know, a careful 

compilation of almost everything we know about the long-run trends in economic 

development. 

 Hence, I propose that the deviations from the law are due to range problems. The data 

cover only three log-decades, the hundreds, the thousands and the ten-thousands, and two of 

these log-decades are not fully covered. This gives some minor kinks in the frequency-curve 

which causes the test to reject that the law is perfectly fulfilled. When the countries are 

divided by income, the range problems are concentrated in the low income group, where the 

law is dramatically rejected.     
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