Net appendix to

Simulating an empirical paper in economics
 Why publication bias are so common

Available from: http://www.martin.paldam.dk/Papers/Meta-method/Simulating-pub-bias.pdf

Part 1: Five cartoon (page 1-6)

Part 2: Graphs comparing the PET and PEESE meta-averages (page 7-11)

The following consists of five cartoons, $\mathrm{c} 1, \ldots, \mathrm{c} 5$, with eight pictures on the same page. They correspond to Tables 2 to 6 in the paper. Half of the pictures are also found in the paper. The simulations use the same parameter values as given in the paper.

The DGP: $\quad y_{t}=\beta x_{t}+\varepsilon_{t}$, where, $x_{t}=N\left(0, \sigma_{x}^{2}\right)$ and $\varepsilon_{t}=N\left(0, \sigma_{\varepsilon}^{2}\right)$. The three parameters are $\beta=1, \sigma_{x}^{2}=2$ and $\sigma_{\varepsilon}^{2}=10$.

The EM: $\quad y_{t}=b x_{t}+u_{t}$, estimated by OLS.

The number of simulated data for each regression in $m=30$. All cartoons start with exactly the same picture as Figure c\#. 1 for reasons explained in the paper.

Figures c\#. 1 to $\mathrm{c} \# .7$ are one of the 1,000 funnel of 500 points estimated for line 1 to 7 in Tables 2 to 6 in the paper. Thus, funnels c\#. 1 to c\#. 7 are based on $500 \cdot 140=70,000$ simulated regressions. The tables in the paper are based on 1,000 funnels, which are 1,000 times more regressions. That is 70 million.

Figures $\mathrm{c} \# .8$ is based on $75^{\prime} 000$ simulated regressions. The corresponding rows in Tables 2 to 6 are not calculated.

Each picture has a vertical line at $\beta=1$, which is the true value for the parameter of interest. The horizontal axis always extends 4 units, either from -1 to 3 or from 0.5 to 4.5 . The vertical axis also extends 4 units, which is always from 1 to 5 . Thus, the 40 pictures are easy to compare.

Figure 1. $S R 0$: The ideal funnel; a cartoon for J rising

Figure 1.1. For $J=1$

Figure 1.3. For $J=10$

Figure 1.5. For $J=25$

Figure 1.7. For $J=50$

Figure 1.2. For $J=5$

Figure 1.4. For $J=15$

Figure 1.6. For $J=34$

Figure 1.8. For $J=150$

Figure 2. $S R 1$: The polished funnel; a cartoon for J rising

Figure 2.1. For $J=1$

Figure 2.3. For $J=10$

Figure 2.5. For $J=25$

Figure 2.7. For $J=50$

Figure 2.2. For $J=5$

Figure 2.4. For $J=15$

Figure 2.6. For $J=34$

Figure 2.8. For $J=150$

Figure 3. $S R 2$: The censored funnel; a cartoon for J rising

Figure 3.1. For $J=1$

Figure 3.3. For $J=10$

Figure 3.5. For $J=25$

Figure 3.7. For $J=50$

Figure 3.2. For $J=5$

Figure 3.4. For $J=15$

Figure 3.6. For $J=34$

Figure 3.8. For $J=150$

Figure 4. SR3: The best indifference funnel; a cartoon for J rising

Figure 4.1. For $J=1$

Figure 4.3. For $J=10$

Figure 4.5. For $J=25$

Figure 4.7. For $J=50$

Figure 4.2. For $J=5$

Figure 4.4. For $J=15$

Figure 4.6. For $J=34$

Figure 4.8. For $J=150$

Figure 5. SR4: The satisficing funnel; a cartoon for J rising

Figure 5.1. For $J=1$

Figure 5.3. For $J=10$

Figure 5.5. For $J=25$

Figure 5.7. For $J=50$

Figure 5.2. For $J=5$

Figure 5.4. For $J=15$

Figure 5.6. For $J=34$

Figure 5.8. For $J=150$

Part 2: Graphs comparing the PET and PEESE meta-averages

The two meta-averages are trivially the same as the mean for SR0. For the remaining four SRs they differ.

Fig 6a. Comparing bias the PET and PEESE for $S R 1$

Fig 6b. Comparing rejections of the PET and PEESE for $S R 1$

Fig 7a. Comparing bias the PET and PEESE for $S R 2$

Fig 7b. Comparing rejections of the PET and PEESE for $S R 2$

Fig 8a. Comparing bias the PET and PEESE for SR3

Fig 8b. Comparing rejections of the PET and PEESE for SR3

Fig 9a. Comparing bias the PET and PEESE for $S R 4$

Fig 9b. Comparing rejections of the PET and PEESE for $S R 4$

It looks as if the PEESE bias for $J=15$ is wrong

