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Abstract: 

Meta regression analysis is used to extract the best average from a set of N primary studies of 

one economic parameter. Three averages of the N-set are discussed: The mean, the PET meta-

average and the augmented meta-average. They are affected by control variables that are used 

in some of the primary studies. They are the POCs, partly omitted controls, of the meta-study. 

Some POCs are ceteris paribus controls chosen to make results from different data samples 

comparable. They should differ. Others are model variables. They may be true and should 

always be included, while others are false and should always be excluded, if only we knew. If 

POCs are systematically included for their effect on the estimate of the parameter, it gives 

publication bias. It is corrected by the meta-average. If a POC is randomly included, it gives a 

bias, which is corrected by the augmented meta-average. With many POCs very many 

augmentations are possible. The mean of all augmented meta-averages is also the mean of the 

N-set. If it has a publication bias so do the average augmented meta-averages. 
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1. Introduction: Three problems and a deep issue 

 

The following deals with the meta-analysis of a generic β-literature. It consists of M papers 

that report N estimates of something that pertains to be the same parameter β. I assume that β 

is the effect of x on y. Each of the N estimates is from a linear regression, with y as the 

dependent variable. It contains the term of interest, βx, and a set of K controls.
2
 

The meta-analysis considers three averages of the N-set: The (arithmetic) mean b, the 

PET meta-average βM, and the augmented meta-average βA that easily becomes a large family. 

The first problem analyzed in the paper is the strengths and weaknesses of the three averages. 

The β-literature contains a total of L controls, where L > K. Once L is large the K 

controls can be chosen in many ways giving a wide range of estimates. Some researchers 

seem to consider the L-set as a trove of possible choices allowing them to find the right result. 

The L controls are the POCs, partly omitted controls, in the meta-study. While the term of 

interest has to be included in all estimates of the β-literature the POCs differ. The second 

problem is the effect of the choice of POCs on the three averages. 

The choice of POCs has a stochastic element. It follows that POCs may be true, so 

that they should be included, or false, so that they should be excluded. It appears that false 

POCs are likely to be common. Till now meta-analysis has disregarded false POCs. The third 

problem is how false POCs influence the meta-analysis. 

The three problems are aspects of the deep issue of comparability: The estimates in 

the β-literature are done on different data samples. The meta-analysis compares these 

estimates. Four observations support comparability: (i) It makes sense if, and only if, the 

estimates fulfill the cp (ceteris paribus) condition, and most estimating models contain cp-

controls. (ii) Many papers claim that they derive the estimation model from economic theory. 

(iii) Researchers often take some POCs to belong in the model, so that they are model 

variables, which should be included in all estimates even if they generate an insignificant 

coefficient. They may even be derived from the theory. (vi) Also, most studies have literature 

reviews where estimates are compared – authors must think that this makes sense. 

Points (i) and (iii) remain implicit in many papers, and it is rare that a paper explicitly 

distinguishes between model variables and cp-controls. They are normally lumped together as 

controls – thrown in with little justification. The choice of POCs is a gray area in economics. 

                                                 
2. Example: β may be the effect of a tax rate, x, on the rate of unemployment, y. Economists know that the sign 

on β is positive. However, when a government wants to change the tax rate it is not enough to know the sign on 

β, and a large literature, such as 400 papers, studies the size of the effect, β. Meta-analysis claims that we may 

learn more about the size of β from a study of the 400 papers than from adding paper number 401. 
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A POC is missing in a model in four cases: 

 

(Ca1) It is a cp-control which should not be included due to the data analyzed.
3
 

(Ca2) It was tried, but it did not work.
4
 Thus, it should be treated as zero. 

(Ca3) The author did not try this control. Thus, in principle it is an omitted variable. 

(Ca4) It is a false variable that the author omitted as he should. Thus, some other papers 

contain a false variable. 

 

The reader should keep the four cases in mind. The augmented meta-average adjusts for case 

(Ca3), but it is biased in the other cases. Below an alternative augmentation method is 

presented that adjusts for case (Ca4), but it is biased in the other cases. 

It is not the job of meta-analysis to judge the literature. The job is to analyze what the 

literature has found as objectively as possible. This gives two levels in the meta-analysis.
5
 

Level one bypasses the gray area of the POCs. Here a high level of objectivity can be reached, 

in the sense that two meta-analysts doing the same study independently, will reach much the 

same result. Level two concentrates on the POCs. Here the attempt to handle things 

objectively has to grapple with two ‘impossibly’ large numbers: The number of model 

variants reached by a selection of POCs, and the number of possible augmentations. 

The two levels of meta-analysis are discussed in section 2 and section 3 respectively. 

Section 4 reports a set of simulations of level one of the meta-analysis, while section 5 

simulates level two. Section 6 concludes. All definitions and variables are listed in the 

Appendix for easy reference. Efforts have been made to make this paper accessible to non-

economists. They should note the Appendix defining the terms. 

The paper reports results from more than half of the simulations made.
6
 The pattern in 

the remaining simulations is documented in Paldam (2013b) available from the home page of 

the project: http://www.martin.paldam.dk/Meta-Method.php. 

  

                                                 
3. A typical cp-control is a regional dummy that should not be included if the data does not cover the region.  

4. Due to the pressures of space such variables are often left out. Maybe, it is mentioned (often in a footnote) that 

they were tried, but gave no result. However, the coding for the meta-study rarely covers such remarks.  

5. The state-of-arts in meta-analysis is covered in the recent textbook Stanley and Doucouliagos (2012). The 

reader should also consult Stanley et al. (2013) for a set of guidelines. 

6. The simulation experiments done for the paper can be measured in regressions: A total of about 21 million 

have been run. Tables 3 to 6 cover about 12 mill of these regressions, while the eight tables in Paldam (2013b) 

document the pattern in the remaining 8.5 mill. 
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2. Level one: The funnel and the first two averages b and βM 

 

Section 2.1 introduces the two levels of meta-analysis, and section 2.2 presents the recipe for 

level one of the meta-analysis. Section 2.3 discusses the two averages, b and βM, while section 

2.4 deals with the hidden dimension in research, the J regressions made for each selected 

publication. Section 2.5 looks at selection in practice. 

The data for level one is the N-set of estimates, bi, including standard errors, si, from 

which precisions, pi = 1/si, and t-ratios, ti = bi/si are calculated. Also, a t-variable for the time 

of publication should be coded, so that bi-set can be sorted into a bt-set. 

 

2.1 The two levels of meta-analysis and main priors in the literature 

Meta-analysis has two levels: Level one is discussed in the present section. It estimates the 

first two averages b and βM, which correct the mean, b, for publication bias. It disregards the 

POCs. This is right if all POCs are cp-controls. I show that it also makes sense if there are 

enough POCs. Level one has a clear recipe that produces robust results. 

Level two is discussed in section 3 and later. It has two aims: Firstly, it studies the 

effect of the POCs on the width of the distribution of the N-set. Secondly, it estimates the 

third estimate, βA, which corrects the meta-average for POC-bias by the augmentation 

method, explained in section 3.4. It makes in case (Ca3). Level two is still rather unsettled, 

and the results are much less robust than the ones at level one. 

Most meta-studies show that the economic profession has a main prior about the 

parameter of interest β. It is typically a sign prior, such as β > 0. Priors come from economic 

theory, common political/moral views, and the interests of dominating sponsors. Such priors 

cause results to be exaggerated. Also, science in general has a prior for clarity, which is 

enforced by the publication process. It leads to polishing of results, so that t-ratios rise. 

 

2.2 The recipe and the problem of the big gap  

Level one has five steps (s1) to (s5): 

 

(s1) A search should be made for the complete β-literature.
7
 

(s2) The (bi, si, pi, ti)-data from the β-literature should be coded into a worksheet. In 

                                                 
7. Researchers outside meta-analysis often argue that the meta-study should be restricted to new papers, papers 

in top journals, or papers using some new estimation technique. Meta-analysts prefer to include everything and 

code variables for such restrictions. This allows the analyst to ask if they really matter. 
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principle, the coding can be done in one way only.
8
 

(s3) The funnel is the (pi, bi)-scatter. It displays the distribution of the N-set. Low precision 

estimates scatter most, so the base of the funnel is wide. As precision increases it 

narrows. The form of the funnel provides important qualitative information. 

(s4)
 9

 The path in the bt-set should be studied to identify time dependencies, as trends and 

structural shifts, indicating breakthroughs in models or estimating techniques. 

(s5) Finally, the result (b, βF, βM) is calculated as explained in section 2.3. 

 

The recipe is clear and the steps are well defined. Thus, they can be done in one way only, 

and the results are robust, see Doucouliagos and Paldam (2013a) for a case study. 

Statistical theory about regression coefficients and many simulation experiments (see 

e.g. section 4.2 below) show how funnels should look: They have two properties: They are 

symmetric and as lean as suggested by the t-ratios of the estimates, as sketched on Figure 1A. 

The main problem at level one is the big gap between the way funnels should look and how 

they actually look. 

 

 

Figure 1. Funnels with typical forms affected by POCs 

1A. Ideal funnel  1B. Censoring at zero     1C. Two tops 

 

 

 

 

 

 

 

 

 

Note:  Each figure shows three curves: The vertical axis of symmetry through β, the vertical b-line, and the 

FAT-PET curve that converges to βM when p rises. On Figure A all three curves are the same, so that β 

≈ b ≈ βM. On Figures B and C the three curves differ, and on Figure C β even becomes two lines. 

Simulated versions of Figures 1A and 1C will appear as Figures 3 and 4 respectively, see also Paldam 

(2013b) for many examples.  

                                                 
8. The bibliography and the coded worksheet should be published on the net. Some random search and coding 

errors will occur at (s1) and (s2). When N is large a small number of moderately sized stochastic errors matter 

little. Large coding errors are easy to discover in (s3). 

9. While the other steps are now standard (s4) is often forgotten, see section 3.1.4 in Stanley and Doucouliagos 

(2012). Time dependencies are discussed in section 3.3. If no time dependencies are identified old estimates are 

as good as new ones. 
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At present about 500 meta-studies have been made in economics, and most have published the 

funnel, so it is well known how empirical funnels look: They are amazingly wide and most 

are asymmetric as sketched on Figures 1B and 1C. At level one it is possible to deal with the 

width coming from trends and structural shifts, but they are normally a small fraction only of 

the excess width. Thus, it is not trivial to identify the true value of β. 

The paper considers two types of funnel asymmetries: Censoring (Figure 1B) and 

multi-tops (Figure 1C). The PET meta-average corrects for censoring as discussed in the rest 

of the present section. Censoring is caused by a systematic selection of the POCs. If all 

models used the same controls there would be no asymmetry, as shown in section 5. 

 

2.3 The Mean, b, the FAT, βF, and the PET meta-average, βM 

The simplest way to summarize the literature is to calculate the (arithmetic) mean: 

 

(1) 
1

/
N

ii
b b N


 , which might be weighted

1 1
( ) / ,

N Nw

i ii i i
b wb w

 
   with weights wi 

 

The FAT, βF, is the funnel asymmetry test, and the PET meta-average, βM. They are jointly 

calculated by the FAT-PET MRA:
 10

 

 

(2a) bi = βM + βF si + ui = bi = βM + βF/pi + ui → βM, when precision p → ∞. It becomes 

(2b) ti = βM pi + βF + vi, after division by si.
11

 

 

The idea of the FAT is that if a funnel is symmetric, the average at each level of precision is 

the same, so that the average is independent of si. The FAT is a powerful test of asymmetry. It 

detects both censoring and multi-tops. If the funnel is symmetric, the FAT βF = 0, so that b = 

βM. Iff βF ≠ 0, it means that bM ≠ b. βM is the censoring-corrected estimate of the mean. 

Section 4 studies an ideal funnel that becomes increasingly censored.  

Relation (2) shows that βM is the limit at the top of the funnel as p goes to infinity. It is 

a good estimate of β when the funnel is symmetric, but it also works when it has a censoring 

asymmetry. When the funnel has several tops, it normally converges to the highest one. This 

might be the best estimate of β, but it might also be the most biased estimate as discussed 

below. The typical result in simulations, where β is known, is that βM is (much) closer to β 

than is b. In most meta-studies, where asymmetries are found, they look like censoring at 

predictable points. Hence, βM is a fine estimate of β.  

                                                 
10. The FAT is from Egger et al. (1997), while the FAT-PET MRA is developed by Stanley (2008). 

11. Version (2b) is preferable to (2a) for estimation purposes as it has less heteroskedasticity. 
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2.4 The big gap is due to the hidden mining dimension of the J-set 
12

 

To find the regression giving bi, the typical author makes a search of Ji regressions. A rational 

researcher will go on regressing as long as the marginal benefits of pushing on are larger than 

the very small costs. The Ji-set and the selection of bi are private information of the resear-

cher. The number of regressions made to produce the N-set is: 

 

(3) 
1

,
N

ii
J NJ


  where all Ji > 1. My guess, based on informal polls, is that J ≈ 25. 

 

This is the iceberg property of macroeconomic research: The visible part of the iceberg is the 

N-set, and the N(J−1) other regressions are the part of the berg that remains invisible below 

the water. It is much larger and known as the dangerous part, also in the present context. J is 

termed the mining ratio. If all NJ regressions were available, they would give an ideal funnel. 

The Ji-set is made to allow a search for a fine model by the priors of the researcher. 

With the prior β > 0, the researcher wants to choose an estimate with a positive b. And by the 

clarity prior he wants to choose an estimate with high t-ratio. They rarely occur for b’s close 

to zero. This implies that the mean of the Ji-set, bJi, is likely to be closer to β than the best 

value, bi, selected. 

 

(4) 0,i i i JiSB b b b      SBi is the selection bias for bi for the prior β > 0 

 

Thus, the positive sign prior gives a positive bias on the b’s. In the same way a negative sign 

prior gives a negative bias. Thus, a prior exaggerate estimates in the direction of the prior, see 

Doucouliagos and Stanley (2012). The discussion of the exaggeration result is continued in 

section 3.2. The micro selection bias is easy to aggregate to the whole N-set: 

 

(5) 
1 1

/ ( ) /
N N

i i Mi i
PB SB N b N b b  

 
        , PB is the publication bias 

 

With many different priors the selection bias may even out so that the PB ≈ 0, but with a main 

prior, β > 0, most SBs will be positive. Thus, (5) becomes significant and positive. Also, if PB 

becomes significant, we know that the literature has a main prior. 

The width of empirical funnels is an artifact because one of the selection rules used by 

researches is to select regressions with high t-ratios that are often at the rim of the NJ-funnel, 

so the width is an indication of the width of the NJ-funnel, where most of the estimates have 

                                                 
12. This section is a brief summary of Paldam (2013a and 2013c). 
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much lower t-ratios than the selected ones in the N-set. 

 

2.5  Selection of the best regression in practice 

The main tool to obtain a large J-set of estimates to choose from is to vary the POCs. When β 

has been researched for some time many controls have been tried, so the number L is high 

(such as 50). Most regressions contain only a handful. If the researcher feels free to choose K 

controls from the trove of all L POCs, the number of possible combinations is: 

(6) n(L, K) =
!

( )! !

L L

K L K K

 
 

 
 

This formula generates large numbers. With (L, K) = (50, 5) equation (6) gives 2,100,000 

possible estimating equations.
13

 Each of these provides an estimate of β, so the trove model 

enables the researcher to surround β with a range of possible bs to choose from. This is the 

first large number at level two of the meta-analysis. The wealth of defensible model variants 

makes it easy to do the J (hidden) experiments from section 2.4. From Sala-i-Martin et al. 

(2004) we know how the distribution of all the possible b’s look for one literature. It is fairly 

normal and that the vertical axis is often well within the distribution as shown on Figure 2. 

Case A: The literature has a large number of POCs and all estimates are published. 

Here βM is very close to bA, and the analysis concludes that bA ≈ βM ≈ β.  

 

 

Figure 2. The frequency (f) of possible choices with the trove approach 

 

 

 

 

 

 

 

 

 

Note:  Case A is without censoring as Figures 1A and 3. Here the full area below the black bell-curve is 

considered. Case B is with censoring as Figures 1C and 4. Here everything on the figure is relevant. 

The frequency distribution is another presentation of the same data as is used for the funnel. 

  

                                                 
13. Xavier Sala-i-Martin has calculated all these regressions in a concrete case and analyzed their distribution; 

see Sala-i-Martin (1997), and Sala-i-Martin et al. (2004).  
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Case B: The literature has a main prior (β > 0) so most estimates with the wrong sign are 

strongly underreported, and due to the clarity prior insignificant estimates are underreported 

as well. This gives an asymmetric distribution and too large t-ratios. The analysis concludes 

that bB > βM ≈ β. On the figure the exaggeration is about 2, i.e., bB ≈ 2βM.
14

 

The trove model has been simulated simply by treating the choice of POCs as a 

stochastic noise in the N-set. When an estimate has been generated, it has then been submitted 

a selection rule, so that it is either accepted or rejected. This has been done until an N-set has 

been reached. The level one analysis has been made on these simulated N-set, see Stanley 

(2008) and Callot and Paldam (2011) and sections 5 and 6 below. 

It should be noted that the simulation experiments in sections 4 and 5 use a much 

more moderate censoring than the one suggested by the theory of the hidden J-dimension 

above. Hence, it produces smaller publication biases than the ones often found in practice. 

  

                                                 
14. This is fairly typical. The meta-community has a rule-of-thumb: Expect an exaggeration of 2. Doucouliagos 

and Stanley (2012) report a rather large standard deviation around this rule. 
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3.  Level two: The POCs and the third average, βA 

  

Section 3.1 introduces level two, and section 3.2 discusses false POCs. Section 3.3 presents a 

new tool for analyzing POCs. Section 3.4 looks at means of biased and unbiased estimates. 

Section 3.5 discusses the augmentation technique giving the A-set of averages, and section 

3.6 derives a few general results for the A-set, while section 3.7 shows that the average of the 

A-set is b, not βM. 

The data at level two includes the binary (N x L)-matrix for inclusion/non-inclusion of 

the POCs. It has the inclusion vector ωk for control zk as column k. The symmetrical exclusion 

vector is φk. If estimate i includes control zk, ωki = 1 and φki = 0, and if zk is excluded ωik = 0 

and φki = 1. An augmented meta-average is reached if either ωki or φki is added as a regressor 

in the FAT-PET MRA of equation (2). Each of the ωks or φks can also be sorted over time to 

give the ωkt-set and the φkt-set. 

 

3.1 Introducing level two of the meta-analysis 

The second level deals with the big gap between expected and empirical funnels: The key to 

understand the gap is the four types of POCs given (Ca1) to (Ca4) from the introduction. Each 

individual POC gives a separate top on the funnel when it is included: It might be a true top or 

a false one. 

With a few (or some very important) POCs the tops may show. Each top is increased 

or deleted if the POC is included or excluded in all estimates, and thus the funnel becomes 

(more) symmetrical. However, this is wrong to do in (Ca1) and (Ca2). 

With many POCs all tops normally add up to a smooth funnel. When the POCs are 

selected systematically to give the ‘right’ estimate of β the funnel will be smooth too, but it 

will often show censoring. When the POCs are selected to make the estimate of β more 

significant (statistically) is leads to polishing, making the funnel much wider than implied by 

the t-ratios. 

The cp-controls should differ when the data set does. A model variable is either true or 

false. Hence, it should either be in all estimates or in no estimates. In both cases it gives a 

POC-bias that it is partly included only. A model variable gives an omitted variable bias on 

βM if the POC is true and an inclusion bias if it is false. The two biases will be jointly 

discussed as POC-bias. 

The augmentation builds on the same-effect-assumption: The effect of the POC is the 
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same in the models where the POC is included as it would have been, if included, in the 

models where it is not, this can be assumed in case (Ca3). It can also be assumed in case 

(Ca4), but here the augmentation has to be different as will be explained. 

If (Ca3) is false the augmentation is biased. If the analysis at level one finds that the 

N-set has a publication bias, this means that the same-effect-assumption is rejected. Hence, 

the augmentation is biased. With no censoring and a one topped symmetrical funnel b = βM , 

and no augmentation should be made. If the funnel is clearly two-topped and there is no sign 

of censoring, the meta-analyst can determine the reasons for the two tops. 

 

3.2 Are most POCs true or false? 

The above analysis has macroeconomics in mind as it is a field with rather limited data and 

large interests at play. Imagine that the data are 50 annual data from 40 countries, this is 2,000 

observations. If it is an important relation, there may easily be 200 papers with on average 8 

estimates in each. If the mining ration J is 25, a total of 40,000 regressions have been made to 

explore this relation. Some of these are the same as new researchers often run through some 

of the old models before they add some new twist, but the field is still heavily mined. Mining 

has an important consequence for the two types of errors: Type I errors are the rejection of the 

true model – mining reduces this type of errors. Type II errors are the acceptance of false 

models (variables) – mining increases this type of errors. 

Hence, it is likely that heavily mined fields have many false variables. In the field of 

growth regressions about 400 variables have been tried to explain the growth rate (see the 

appendix to Durlauf et al. 2005). All of these variables have been found significant in one 

study or another, but several studies have found that only about 20 of these variables provide 

robust explanations (see Sala-i-Martin et al. 2004, Sturm and de Haan, 2005). Thus, it is 

arguable that the growth regression literature contains 20 true and 380 false variables. Some 

of the 380 variables are significant due to a random fluke, but most belong to groups of 

variants of the same factor or are intermediate variables in a complex of confluent variables. 

Thus, the prime example of false variables occurs with multicollinearity. Think of five 

control variables which are all proxies for the same factor. The factor should be counted once, 

but not five times. Thus, the five variables should be treated as one true and four false 

variables in the analysis at level two. 

 

3.3 A new tool: The time profile of inclusion 

Like the bi-set should also be sorted into the bt-set, the ωz-vector can be sorted into a ωzt-set to 
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study the time-profile for the inclusion of z. It allows the analyst to see if the use of the said 

control happens in a certain period, and if this period has similar movements in the bt-set. In a 

few simple cases this allows important conclusion about the true model to be drawn: 

Think of a model-POC, z, which is discovered at a certain time and becomes increa-

singly common from that time onwards. This should show up as a corresponding structural 

break in both the ωzt-set and the bt-set. In this case it is likely that z would have had the same 

effect before it was discovered, as it has had after. Thus it is a break-through control, where it 

is likely that that the same-effect-assumption holds. It should be treated as a true control. 

Most researchers dislike variables that give small or insignificant coefficient. Thus, if 

a control was prominent in the literature, up to a point and then drop out, we may assume that 

the researchers have noted and tried this control, but that it ceases to produce a significant 

coefficient. Thus it is a drop-out control, where it is unlikely that the same-effect-assumption 

holds. It should be treated as a false control. 

An interesting case is a control that comes and goes. My assessment is that such 

variables are the ones most likely used in the systematic part of the selection process. Here it 

is unlikely that the same-effect-assumption holds, so it should be treated as a false control. 

To go through all POCs in this way is a major effort and it likely to yield unclear 

results for many variables. Also, it does not sort out the cp-POCs. 

 

3.4 The mean for a model with one POC: Sorting the N estimates in the Q- and the S-part  

Assume that the POC is randomly included (Ca3) or (Ca4). This gives a funnel with two tops. 

The N estimates are sorted so that the Q-part, with the share q = Q/N, is first part. Here all 

estimates include the POC. The remaining S = N – Q estimates are without the POC. It is the 

S-part, with the share s = S/N = 1 – q. The Q-part gives one top and the last S-part gives 

another. Many examples of such funnels are found in Paldam (2013b). The mean becomes: 
 

(7) 
1 1 1

/ .
N Q N Q R

i i ii i i Q

Q S
b b N b b qb sb

QN SN   
        In the weighted case it is 

(8) 
11
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 

    

    

  
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   
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= 

,w Q w Rq b s b  where 
1 1

/ ,
Q Nw

i ii i
q w w

 
  and 

1 1
/ ,

N Nw

i ii Q i
s w w

  
    

 

Note that q
W

 + s
W

 =1, for all weight sets, and if the w’s are positive, 0 < q
w
 < 1. The reader can 

easily check that if the weights are 1 equation (8) becomes (7). So, equation (7) is a good 
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approximation to (8) if the weights are not extreme and independent of the in/exclusion of z. 

Three conclusions follow: (i) The mean b is always between b
Q
 and b

S
. (ii) If z is true, 

b
Q
 is the unbiased estimates, and it is thus best. (iii) If z is false, b

S
 is the best average. This 

pattern is given in Table 1. The key observation from the table is that if a false variable is 

treated as true or vice versa, the resulting ‘best’ estimate of β is in fact the ‘worst’ average, 

which is more biased than the average of all observations. 

 

 

Table 1. The relation between the means 

if the POC is a model variable and it is randomly included 

 (1) (2) (3) (4) (5) (6) 

 The POC is true The POC is false 

 S-set All Q-set S-set All Q-set 

POC z Not in Mixture In Not in Mixture In 

Biased Fully Partly None None Partly Fully 

Average  b
S
  b  b

Q
  b

S
  b  b

Q 
 

 

Some authors think that the POC is a true model variable and others think that it is not. The 

average (7) is weighted with number of researchers in both groups. It is thus the best average, 

except when the funnel is censored, see sections 5.3 and 6.4. 

Obviously, if we are dealing with case (Ca1) or (Ca2) the mean does not cover biased 

and unbiased averages, so the mean is better the means of both the S-set and the Q-set. 

 

3.5 The augmentation method to account for randomly included POCs 

Formula (7) is easy to apply for one POC, but it is not suitable in situations with many. 

However, an elegant solution is to augment the FAT-PET MRA (2) with the a-vector that is 

either the ω- or the φ-vector for each z the (2) to get (9): 

 

(9) bi = βA + βF si + λ1 ai1 + … + λL aiL + ui 

 

With two possibilities (ωij and φij) for each aij, the number of possible augmentations is:  

 

(10a) n(L) = 2
L 

 or  

(10b) 2K
L

K

 
 
 

 if K variables are chosen for the augmentation 

 

These expressions get large rather quickly, so it is the second large number in the meta-
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analysis. When it is compared with equation (6) it produces even larger numbers. Think of the 

example above (in section 2.5) where L = 50 and K = 5. Here (6) gave 2.1 x 10
6
 estimates of 

β. Equation (10a) gives 1.1 x 10
15

 estimates of βA.  

Some of the POCs may be cp-controls that should not be augmented for, and for other 

POCs the time profile may tell us that they are either true or false, so instead of L we should 

look at L
M 

< L in relation (10). But even for L
M

 = 30 equation (10) still gives 1.1 x 10
9
 

possible augmentations. 

The n(L
M

)-set of augmented meta-averages is the A-set. It does have a considerable 

range, and if the meta-analyst searches this set, it is likely that he will find a ‘nice’ result. If 

there is no censoring, the βFsi-term is irrelevant so (9) becomes: 

 

(11) bi = βA + λ1 ai1 + … + λL aiL + ui 

 

With only one POC (11) gives the same result as (7). So that  

 

(11a) bi = βA1 + λ φi, gives βA1 ≈ bQ and 

(11b)  bi = βA2 + λ ωi, gives βA2 ≈ bR.  

 

Recall that the sum of ω is Q and the sum φ is R, so (11a) and (11b) replicate (7) b = qβA1 + 

sβA2. Hence, if βA1 > b, it follows that βA2 < b, and vice versa. If q = s = 0.5, βA1 and βA2 are 

symmetrical around b. 

If z is true, we use φi to take out the results that are not controlled for z, and if z is 

false, we use ωi to take out the results that are controlled for z.
15

 In the simulations we know 

the DGP, data generating process. Thus, if z is in the DGP, (11a) is the right augmentation 

and (11b) is the wrong augmentation. However, if z is not in the DGP, the roles of (11a) and 

(11b) are reversed. In the simulations we write the augmented meta-averages βAR and βAW if 

they are rightly and wrongly augmented. 

If we know if z is true or false, it is easy to make the right augmentation, but the very 

fact that z is a POC means that the researchers differ in their assessments. 

 

3.6 Two general results about the A-set, given that the FAT is zero 

It is possible to derive a few general results about the A-set. We first look at the case without 

censoring where we disregard the FAT as in equation 11. For each choice of an augmentation 

                                                 
15. It is a little confusing that the exclusion set φ is used if z is true, and the inclusion set ω is used if z is false. 

The reader should keep this point in mind. 
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such as (12a), the symmetrical augmentation (12b) also exists: 

 

(12a) bi = βA1 + λ1 ωi1 + λ2 φi2 + … + λL-1 ωiL-1 + λL φiL + ui 

(12b) bi = βA2 + λ1 φi1 + λ2 ωi2 + … + λL-1 φiL-1 + λL φiL + ui 

 

For each pair of symmetrical terms such as λ2 φi2 and λ2 ωi2, we know that they move the 

estimate of β to the reverse side of b. Since it holds for each z, it must hold for all L zs in (12). 

Hence, b is always in the interval between βA1 and βA2. This proves that b is the median in the 

full A-set. If the A-set is normally distributed, as seems likely in most cases, the median is also 

the mean. This explains why augmentations do not make sense with many (uncertain) POCs. 

If the A-set is normal around the mean b, the best choice is surely b as 50 % of the results are 

above βM and 50 % are below. 

Finally, it should be noted that each estimate (9) and (11) is an average of the N-set. 

Any average reduces the range. Hence, the CV of the A-set is smaller than the CV of the 

original N-set. 

 

3.7 The average of the A-set is b, not βM 

By a complete augmentation I mean that every POC is augmented – rightly or wrongly. All 

complete augmentations make the FAT = 0, and thus the estimates of (12a) and (12b) are the 

same whether or not they contain the FAT-term. This should be obvious from the formulas, 

and the reader will see that it is confirmed by the simulations made. 

Thus, the FAT does not work in augmented FAT-PET MRAs. It might still work if 

some of the POCs are augmented for, but it certainly fails for the average POC. 

Hence, the average of the A-set is b, whether or not the estimates (9) contain the FAT-

term. It means that if b biased, the average augmented meta-average is biased as well, which 

is the case if the FAT in the FAT-PET MRA differs from zero. This is another way to see that 

there is publication bias when the same-effect-assumption from 3.1 is broken. 

If we start from a FAT-PET MRA, where the FAT shows asymmetry, i.e. βF ≠ 0, it is 

a risky business to start augmenting the FAT-PET MRA. It is a toss-up if it makes the 

estimate of β better or worse. 

To summarize: The N-set of primary estimates generates one mean, one βM-meta-

average, and a large A-set of augmented meta-averages, βA. The A-set has the mean as the 

central estimate, and the range of the A-set is much smaller than the one of the N-set. If the 

FAT ≠ 0 in the FAT-PET MRA, the average augmented meta-average is biased.  
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4. The simulations 1: Level one disregarding the POCs 

 

As level one disregards the POCs it is the case with zero or many POCs. Section 4.1 explains 

how the simulations are run. Then section 4.2 looks at the ideal funnel and section 4.3 

simulates censoring. 

 

4.1 The simulation technique used 

The simulations use a known DGP, Data Generating Process and an EM, Estimating Model, 

which is estimated using OLS. The DGPs and EMs used are listed in Table 2. All DGPs and 

EMs contain the term of interest, βx, where β = 0.25, which is the true value of β throughout. 

The present section uses DGP = EM = (1), disregarding the POCs. 

 

 

Table 2. The four models with 0, 1 or 2 POCs: z1 and z2  

DGP  Data Generating Process EM Estimating Model Used in POCs 

(1) yi = β xi + εi (1) yi = b xi + ui Section 4 0 

(2a) yi = β xi + γ1 z1i + εi (2a) yi = b xi + g1 ω1 z1i + ui Section 5 1 

(2b) yi = β xi + γ2 z2i + εi (2b) yi = b xi + g2 ω2 z2i + ui Section 5 1 

(3) yi = β xi + γ1 z1i + γ2 z2i + εi (3) yi = b xi + g1 ω1 z1i + g2 ω2 z2i + ui Section 5 2 

Notes: The explanatory variables, xi, z1i and z2i, are correlated, as proposed in section 3.2, and the ε’s are 

generated noise, while the u’s are noise in the EM. ω is a random generator of the numbers 0, 1. φ is 

symmetric to ω, so that ωi + φi = 1 for all i. 

 

 

When we disregard the POCs the model becomes very simple: The models have no constant, 

so x has zero average, and so has the noise term ε. The variation in the experiments is 

generated by the two standard deviations: sd(x) and sd(ε) which in this section are both set at 

1. This is so large relative to β that the funnels look realistic (compare with Stanley and 

Doucouliagos 2010). 

In the typical β-literature most of the noise in x comes from different samples, and 

most of the noise in ε comes from model variation. With a large number of possible model 

variants ε will give an approximate stochastic noise. In the empirical funnels where no 

asymmetry is evident the funnels look rather like Figure 3.  

All funnels have N = 500 observations generated by 500 regressions. I here follow the 

convention of starting regression 1 with 20 simulated data, and then regression 2 has 21 data, 

etc. till regression 500 that has 519 simulated data. This gives a realistic range of precisions as 

shown on the vertical axes of the funnels. In the censoring experiments some of these 
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regressions are censored, so N is increased till 500 points are reached. In Tables 4 to 6 below 

each experiment (line) is calculated from R = 1,000 simulated funnels (thus it covers 500,000 

regressions). However, in Paldam (2013b) each experiment covers R = 100 funnels only. This 

is also the case for Table 3. 

 

4.2 An ideal funnel 

The ideal funnel is shown as Figure 3 (that looks like Figure 1A). Here the DGP = EM = (1), 

with sd(x) = sd(ε) = 1. When the noise terms are increased the funnel becomes shorter and 

broader, but keeps the same general shape. 

 

 

Figure 3. The ideal funnel 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Results for different Cs, censoring point 

C Mean, b PET, βM C Mean, b PET, βM 

-0.25 0.250 0.249 0.1 0.257 0.235 

-0.2 0.250 0.248 0.125 0.259 0.232 

-0.15 0.251 0.248 0.15 0.264 0.226 

-0.1 0.250 0.249 0.17 0.265 0.227 

-0.05 0.250 0.249 0.18 0.266 0.227 

-0.025 0.252 0.247 0.19 0.266 0.228 

0 0.253 0.245 0.2 0.275 0.230 

0.025 0.253 0.244 0.25 0.294 0.250 

0.05 0.254 0.243 0.3 0.338 0.291 

0.075 0.255 0.238 0.35 0.406 0.336 

Note:  PET is the PET meta-average. Averages between 0.237 and 0.264 are bolded. R = 100 funnels are 

estimated for each row, so more than 1 million regressions was made to generate the table. 
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4.3 Censoring the funnel 

Censoring of the funnel of Figure 3 is done by rejecting all points below a certain C-point and 

supplementing the number of simulation so that N remains at 500. The censoring experiments 

are run at the 20 C-points listed in Table 3. Table 3 shows that the mean is a little better than 

the PET if the censoring is small, but after C ≈ 0.18 the PET becomes better. 

 

 

Figure 4. The funnel from Figure 3 censored at the censoring point C = 0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The bias of the mean, b, and the PET, βM from Table 3 
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Figure 4 shows how the picture is when C = 0.2 where 22 % of the calculated estimates are 

censored. Here 639 regressions have been run. On the figure the PET is marginally better than 

the mean only.  

This full pattern from Table 3 is showed on Figure 5. The mean is better than the PET 

for little to moderate censoring, but here the difference is small. However, with substantial 

censoring the PET is substantially better. Thus, it is better to use the PET when the funnel is 

censored. Note that if the censoring is at the true value β = 0.25 the PET gives a perfect 

estimate. When the censoring is larger also the PET is biased but not as much as the mean. 
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5. The simulations 2: Level two with one or two POCs 

 

Section 5.1 surveys the cases covered, while section 5.2 describes the DGP and EMs used. 

Section 5.3 looks at cases with uncensored two-topped funnels, while 5.4 show what happens 

when these funnels are censored. Finally, section 5.5 identify a lucky case and conclude. 

 

5.1 The cases covered 

The three models with one or two POCs were shown in Table 2. They can be combined in the 

9 ways listed in Table 4. To run the simulations with each combination four parameters (γ1, γ2, 

q, ρ) have to be chosen: γ1 and γ2 are the weights of the POCs in the DGP, q is the inclusion 

probability of the POC in the EM, and ρ is the correlation between x and the two POCs. This 

gives a large number of cases to cover even when both q and ρ are chosen to be the same for 

both POCs. Paldam (2013b) documents 182 systematic experiments (with R = 100). Fortuna-

tely, a rather simple pattern emerges. 

 

 

Table 4. The nine combinations of the 3 equations with POCs from Table 2 

 Combination POC1, z1 POC2, z2 Right augmentation Comment 

Case DGP EM DGP EM Bias DGP EM Bias z1 z2 Rest Same Sym 

(1) (2a) (2a) Yes Yes OVB No No Ok  φ1 - No Yes (5) 

(2) (2a) (2b) Yes No All No Yes IVB -  ω2 Yes No (4) 

(3) (2a) (3) Yes Yes OVB No Yes IVB  φ1  ω2 No No (6) 

(4) (2b) (2a) No Yes IVB Yes No All  ω1 - Yes No (2) 

(5) (2b) (2b) No No OK Yes Yes OVB -  φ2 No Yes (1) 

(6) (2b) (3) No Yes IVB Yes Yes OVB  ω1  φ2 No No (3) 

(7) (3) (2a) Yes Yes OVB Yes No All  φ1 - Yes No (8) 

(8) (3) (2b) Yes No All Yes Yes OVB -  φ2 No No (7) 

(9) (3) (3) Yes Yes OVB Yes Yes OVB  φ1  φ2 No Yes  

Note:  OVB is omitted variable bias, and IVB is included variable bias. ‘Rest’ is the remaining bias after the 

right augmentation. ‘Same’ means that the DGP and EM is the same. ‘As’ means that it is symmetrical 

to the other case mentioned.  

 

 

5.2 The (DGP, EM)-combinations and the right augmentation if there is no censoring 

Taking cases (1), (2) and (3) from Table 4 as examples will show what is going on: 

In case (1) both the DGP and EM is (2a). As the POC z1 is only included in Q of the N 

estimates, the FAT-PET has an OVB, omitted variable bias. It goes away when the relation is 

augmented with φ1, while the augmentation with ω1 is wrong.
16

 

In case (2) the DGP is (2a) and the EM is (2b). Thus, the literature has not discovered 

                                                 
16. All 9 cases are estimated for various combinations of the 4 parameters in sections 4 and 6 in Paldam (2013b). 
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the right POC, z1. Consequently, all estimates are biased. However, the EM uses z2 instead. 

Both z1 and z2 are correlated with x so z2 may turn significant.
17

 Thus, z2 is a false variable that 

gives an IVB, included variable bias, which is adjusted for by the ω2-augmentation, but a bias 

remains due to the undiscovered z1-POC. Here the φ2-augmentation is wrong. 

In case (3) the DGP is (2a) and the EM is (3). The EM thus contains one true and one 

false variable. The (φ1, ω2)-augmentation is right, and the (ω1, φ2)-augmentation is wrong, and 

so is the two remaining augmentations (ω1, ω2) and (φ1, φ2). They are both close to the mean. 

When the EM contains one POC the number of possible augmentations is 2
1
 = 2, so 

the chance of doing it right is 50 %. When the EM contains two POCs the number of possible 

augmentations is 2
2
 = 4, so the chance of doing it right is 25 %. With 10 POCs the possible 

number of augmentations is 2
10

 = 1,024, so the chance of getting it right is 0.1 %, etc. 

The 9 combinations in Table 4 have four symmetrical cases, given in the ‘Sym’ 

column. So there are only 5 cases to study. When the number of POCs goes up the number of 

different cases rises very quickly.  

 

5.3 The two-topped funnels: without censoring 

All 9 cases are covered with examples and enough simulations in Paldam (2013b) to show the 

pattern. The simulations confirm the symmetries already discussed. Only 5 of the cases are 

different. Table 5 thus has five sections. The examples shown in this section use the 

parameters: Sd(x) = sd(z1) =1, γ1 = 0.75, ρ = 0.7, q = 0.5 and N = 500. Table 5 uses R =1,000 

simulation of the funnel. Each line has thus needed ½ million simulated regressions. The 

results are stable + 0.001. 

The four Avs columns count the number of the 1,000 averages (in %) where it cannot 

be rejected, at the 5 % level, that the average is 0.25. It is reassuring to see that the bolded 

averages have Avs’es in the range from 92 to 95. In the same way the four Fs-columns are 

counts of the cases where the FAT = 0 is not rejected, so that symmetry is confirmed. 

When a two-topped funnel occurs the two augmentations, βAR and βAW, find each top 

by taking out the other one. If the DGP is fully within the EM, one of these tops is the right 

one and one is false. It does not matter for the true top if the EM contains extra variables. 

However, if the EM misses a variable, all results are biased. 

  

                                                 
17. Both z1 and z2 are correlated with x, and hence they are also correlated with each other. With the correlation 

ρ
2
 if ρ is large z2 may work as a proxy for z1, and thus actually improve the estimate. In most of our simulations ρ 

= 0.5 so ρ
2
 = 0.25, and hence z2 is a poor proxy for z1. 
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Table 5. The 5 different cases, with different values of ρ 

Case DGP EM ρ Mean Right augmentation Wrong augmentation PET meta-average 

Tab 4    b βAR Avs Fs βAW Avs Fs βM Avs Fs 

(1.1) (2a) (2a)  0.7 0.513 0.251 94 94 0.776 0 94 0.806 0 0 

(1.2) (2a) (2a)  0.2 0.363 0.250 93 95 0.474 0 95 0.263 92 0 

(1.3) (2a) (2a) -0.5 0.063 0.250 95 95 -0.125 0 95 0.096 0 90 

(2.1) (2a) (2b)  0.7 0.775 0.776 0 95 0.776 0 95 0.775 0 95 

(2.2) (2a) (2b)  0.2 0.475 0.474 0 95 0.474 0 95 0.474 0 95 

(2.3) (2a) (2b) -0.5 -0.125 -0.125 0 95 -0.124 0 95 -0.124 0 96 

(3.1) (2a) (3)  0.7 0.513 0.251 94 94 0.776 0 94 0.950 0 0 

(3.2) (2a) (3)  0.2 0.363 0.250 94 94 0.474 0 94 0.289 47 4 

(3.3) (2a) (3) -0.5 0.063 0.249 95 96 -0.125 0 96 -0.028 0 18 

(7.1) (3) (2a)  0.7 0.031 -0.100 0 95 0.425 0 95 0.306 63 0 

(7.2) (3) (2a)  0.2 0.157 0.099 0 94 0.324 0 94 0.099 0 13 

(7.3) (3) (2a) -0.5 0.406 0.500 0 94 0.125 0 94 0.412 0 98 

(9.1) (3) (3)  0.7 0.294 0.250 94 94 0.425 0 94 0.431 0 0 

(9.2) (3) (3) 0.2 0.269 0.250 94 94 0.324 0 94 0.243 91 47 

(9.3) (3) (3) -0.5 0.219 0.250 95 95 0.125 0 95 0.213 24 94 

Notes:  The left hand column refers to Table 4. Thus, (1.2) is the first experiment with case (1) from the table. 

Due to the symmetries only five of the 9 cases are covered. Averages from 0.237 to 0.264 are bolded. 

Each row reports averages for R = 1,000 funnels of N = 500 regressions. This is 7.5 mill regressions. 

 

 

The table confirms that the mean b is always the average of βAR and βAW, while the PET is 

different. With two-topped funnels, βAR and βAW, find the two tops and βM goes to the highest 

top – normally it overshoots that top. The table also confirms that the FAT-test is the same for 

the two augmentations. The Fs’s are in the range from 94 to 96 %. Fully augmented funnels 

are symmetric, so when the POCs are fully augmented the FAT turns powerless. 

 

5.4 Two illustrations of cases from Table 5 

Case (1.1) with one true POC where the DGP = EM is illustrated by Figure 6, while the 

reverse case (2.1) with one false variable and a missing variable is shown as Figure 7. The 

averages included on the two figures are the ones from Table 5, and they look as they apply to 

the figures as well, so the two examples shown are typical of the 1,000 funnels estimated. 

Figure 7 shows that case (2) is puzzling. Here a variable is missing, and even if another 

variable is included it has a marginal effect only. However the funnel looks fine. All 9 FAT 

tests have Fs’es at 95. Much the same happened in case (7) but here the four averages differ. 
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Figure 6. Case (1.1) the DGP = EM = (2a) 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  The case illustrated is the one of row (1.1) of Table 5. The false peak is at 0.25 + 0.7 x 0.75 = 0.775. 

 

 

Figure 7. Case (2.1) the DGP = (2a), EM = (2b) 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The case of row (2.1) of Table 5. The peak is the same as the false peak on Figure 6. 

 

 

5.5 Three cases of funnels with censoring 

Finally, the two-topped funnels are censored. This assumes that here many more POCs with a 

small effect each, and one or two POCs that are really powerful. For easy intuition the 

experiments start with the two cases shown on Figures 6 and 7. Row (1.1) is the same as in 
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Table 5 and is also shown on Figure 6. Obviously, if the smallest estimates are censored, the 

false top becomes more prominent. This is precisely as happens. And as the two funnels have 

virtually no overlap case (1.5) shows how unlucky one can get. 

 

 

Table 6. Three cases from Table 5 censored in two ways 

Case DGP EM C Mean Right augmentation Wrong augmentation PET meta-average 

Tab 5   censor b βAR Avs Fs βAW Avs Fs βM Avs Fs 

(1.1) (2a) (2a) No 0.513 0.251 94 94 0.776 0 94 0.806 0 0 

(1.4) (2a) (2a) 0.25 0.625 0.287 5 42 0.759 0 42 0.911 0 0 

(1.5) (2a) (2a) 0.50 0.775 0.570 5 95 0.772 0 95 0.776 0 96 

(2.1) (2a) (2b) No 0.775 0.776 0 95 0.776 0 95 0.775 0 95 

(2.4) (2a) (2b) 0.6 0.788 0.750 0 15 0.755 0 15 0.755 0 15 

(2.5) (2a) (2b) 0.75 0.818 0.762 0 0 0.762 0 0 0.762 0 0 

(3.3) (2a) (3) No 0.063 0.249 95 96 -0.125 0 96 -0.028 0 18 

(3.4) (2a) (3) 0 0.251 0.239 84 78 0.029 0 78  0.244 93 94 

(3.5) (2a) (3) 0.25 0.398 0.250 95 0 0.207 98 0  0.250 95 0 

Note:  Each of the 3 sections starts with a row from Table 5. The next two lines are (x.4) and (x.5) that are 

new. They are the censored cases. R = 1,000 funnels are estimated for each row. This gives 3 mill new 

regressions. 

 

 

Figure 8. Case (3.3) without censoring 

 

 

 

 

 

 

 

 

 

 

 

 

 

The middle section of Table 6 is rather parallel to the story told in section 4.3. It only differs 

as it is all wrong because an important variable is missing in the EM. The censoring changes 

the weights of the number of rightly and wrongly augmented estimates, and both the mean 
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and the PET may move outside the interval of the two augmented meta-averages. If we could 

have made a complete augmentation in this case then we would have got the mean as the 

average of any pair of symmetric complete augmentations. 

 

5.6 A lucky illustration and concluding remarks 

Figure 9 is case (3.3) from Tables 5 and Figure 8. The false top is at a lower β-level than the 

true top. As the main bias in the β-literature is that β > 0 Figure 9 shows a censoring at C = 0. 

This makes the funnel look ideal and all four averages are very close to β = 0.25. 

There is no way to tell from the meta-analysis if we are in the lucky case of (3.4) 

where censoring rids the analysis of a false top or in the unlucky case of (1.1) where the 

censoring rids the analysis of the true top. This is surely a question for economic analysis. 

The examples in this section show that with few POC only it is important to study the 

funnel and try to figure out what is going on. With few POCs this is normally easy, as there 

funnel has clear peaks and an augmentations exercise will tells exactly how the different 

POCs generate the peaks. 

It has thus been demonstrated that while the PET meta-average works well adjusting 

for censoring, it is not the right tool to handle situations with a couple of POCs that give 

clearly multi-topped funnels. However, the FAT still rejects symmetry in these cases. 

 

 

Figure 9. Case (3.4) that is case (3.3) with censoring at zero 
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6. Conclusion 

 

A key concept in meta-analysis is the POC, partly omitted control variable, which is used in 

some primary studies and not in others. The nature of POCs is rarely stated in articles, so the 

inclusion of POCs is a gray area in economics. The paper has discussed three averages: the 

first two disregard the POCs. It is the mean and the PET meta-average. 

The augmented meta-average corrects the mean for POC-biases, as should be done if 

the POC is a true model variable that is randomly excluded. The paper introduces a symme-

trical augmentation if the POC is a false variable that is randomly included. 

The reason why POCs are randomly included is often that authors disagree about 

models and hence they also disagree about the right augmentation. If the literature disagree 

about many variables very many augmented meta averages are possible – giving a large set of 

augmented meat averages. The average of this set is the mean (not the meta-average). The set 

has a substantial variation. That opens the meta-study for meta-mining that chooses augmen-

tations that move the average in the direction wanted. This is a game that undermines the 

whole purpose of meta-analysis. 

The set of possible augmentations can be somewhat reduced: Some POCs are ceteris 

paribus control for differences between data samples. They should differ between studies. It is 

wrong to augment the meta average with such variables. 

Other POCs are parts of the model. They should be included in all or none of the 

models. In published results they are often omitted when they are insignificant. The average 

should not augment in such cases. They should be included as zero in the average precisely as 

done by the mean. 

However, the choice of POCs may also be systematically influenced by their effect on 

the estimate of β giving a selection loop from the estimate to the choice of POCs. This loop is 

at the core of publication bias. It shows up as a censoring asymmetry for the funnel that is 

detected by the FAT. 

If the FAT detects an asymmetry the mean and the PET meta average differs. If the 

asymmetry looks like a censoring at a predictable place, we can be confident that the literature 

has a publication bias. Then the PET meta-average is the best average. And we know that the 

effects of the POCs are different in the cases where they are included and excluded. This 

means that the augmentations give biased results.  
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Appendix: The terminology of meta-analysis and the simulations 

Terminology of the β-literature, the numbers M and N 

The parameter β β = ∂y/∂x is the effect of interest. It is the effect of x on y 

The β-literature All papers containing estimates of β 

Main prior in profession Dominating prior in the literature. We assume β > 0 

M-set of papers All papers in the β-literature, within the search window of the meta-study 

N-set of estimates: (b1, … , bN) Each bi has standard error, si, t-ratio, ti,= bi/si and precision, pi = 1/si 

The primary estimation equation and the POCs, the numbers L and K 

Estimating equation (linear) yj = bixj + [g1z1j +…+ gKzKj] + uj. The []-bracket holds K POCs only 

L and K << L The β-literature uses L controls  

POC, z, partly omitted control The POC is included in Q < N estimates, and excluded in S = N – Q 

estimates The funnel giving the distribution of the N-set 

Funnel: distribution of N-set The (bi. pi)-scatter. It should be lean and symmetric, but often it is neither 

Funnel width: CV of N-set CV is coefficient of variation, the standard deviation divided by the mean 

The meta-analytical tools 

FAT, Funnel Asymmetry Test βF, which is estimated jointly with the PET meta-average 

FAT-PET MRA Meta regression: bi = βM + βF si + ui = βM + βF/pi + ui → βM if pi → ∞ 

Inclusion of z: (ω1, …, ωN) ωi = 1 if z is included in estimate else 0, ΣN ωi = Q 

Exclusion of z: (φ1, …, φN) φi = 1 if z is excluded in estimate else 0, ΣN φi = S. Thus, ωi + φi = 1 

Augmented FAT-PET MRA bi = βA + βF si + λ1 ai1 + … + λL aiL + ui. For POC zj aij is the φ-vector if zj is 

 

 

 a true model variable, or the ω-vector if zj is a false model variable  

The three averages and the publication bias 

Mean, b  Arithmetic average. Disregards funnel asymmetries. May also be weighted 

PET meta-average, βM Corrects the mean for funnel censoring 

Augmented meta-average, βA From (i) or (ii). Corrects PET meta-average for random POC biases 

Publication bias PB = b – β ≈ b – βM. Main prior β > 0  βF < 0   b > βM   PB > 0 

Values in Simulations of the integers 

R The number of funnels estimated R = 1,000 in Tables 4 to 6 and R = 100 in Table 3 

N The number of estimates, bi, in the funnel N = 500. When censoring more regressions are run
 b)

 

L The number of POCs in the experiment L = 1, 2  

Di Di is the sample size used to estimate bi Di = 20, 21, 22, …519 
b)

 

Data generating process and estimating model 

DGP yt = β xt + [γ1 z
t
1t + … + γKz

t
Kt] + εt EM yt = b xt + [g1 ω1 z

t
1t + … + gT ωT z

t
Tt] + ut, 

 Most of the POCs in the EM are the same as in the DGP, but there might be more or less 

 As the DGP has no constant all averages have zero mean, they have sd’s of 1 in most cases 

Parameters of the DGP and EM Sizes chosen 

β Parameter of interest in DGP, β = ∂y/∂x β = 0.25 

ρj Correlation of POC j and x in DGP ρj = 0.25, 0.5 and 0.75 

εt Noise in DGP Average 0, sd = 1 

ωj Inclusion of POC j in EM δj = 0.25, 0.5 and 0.75 

z If z is included in DPG, it is true, else false K is 1 or 2 

Q Q = ∑N ω. The share q = Q/N is inclusion probability q = 0.5 in most experiments  

Notes: When some estimates are censored N is increased, and thus the Ds increase as well. Note that si is uses 

both as the standard error of the estimates and as the share of the estimates, where the POC z is not included. 


